Overall Story

- Protons and electron carry charge
- Presence of charge creates an electric field
- The field creates potential differences between points within the space it exists
- Other charges react to this field and potential and move about (current)

Electrical Charges

 Charge is carried by electrons and protons.

Can be positive or negative.

 Like charges repel, opposite charges attract.

 Total charge in a system is conserved.

- Charges come in discrete quantities.
- Charges are measured in Coulombs (C).
- Usually denoted by q.

A negatively charged rubber rod suspended by a string is attracted to a positively charged glass rod.

A negatively charged rubber rod is repelled by another negatively charged rubber rod.

Electric Force and Field

$$\vec{\mathbf{F}}_{12} = k_e \, \frac{q_1 q_2}{r^2} \, \hat{\mathbf{r}}$$

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}_{\mathbf{e}}}{q_0} = k_e \, \frac{q}{r^2} \, \hat{\mathbf{r}}$$

$$k_e = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ N.m}^2/\text{C}^2$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / \mathrm{N.m}^2$$

E-Field Force Acceleration
$$\vec{\mathbf{F}} = q\vec{\mathbf{E}}$$
 $\vec{\mathbf{a}} = \frac{\vec{\mathbf{F}}}{m} = \frac{q\vec{\mathbf{E}}}{m}$

Electric Field Lines

- A way to visualize field patterns over space.
- The e-field is tangent to the field lines at each point and along the direction of the field arrow.
- The density of the lines is proportional to the magnitude of the efield.
- Field lines start from positive charges an end at negative ones.
- Field lines can not cross.

Gauss' Law

Electric Flux

$$\Phi_E = \int_{surface} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

Gauss' Law

$$\Phi_E = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{in}}{\mathcal{E}_0}$$

$$E = k_e \frac{Q}{r^2} \qquad E = k_e \left(\frac{Q}{a^3}\right) r$$

$$r > a \qquad r < R$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

Conductors and Gauss' Law

- The electric field is zero everywhere inside a conductor at electrostatic equilibrium.
- Any net charge on a conductor will reside on the surface.
- The electric field just outside a conductor is perpendicular to the surface and is proportional to the charge density.
- The charge density is highest near parts of the conductor with the smallest radius of curvature.

$$E = \frac{\sigma}{\varepsilon_0}$$

Electric Potential

Electric Potential Energy

$$\Delta U = -q_0 \int_A^B \vec{\mathbf{E}} . d\vec{\mathbf{s}}$$

Potential Difference

$$\Delta V = \frac{\Delta U}{q_0} = -\int_A^B \vec{\mathbf{E}} . d\vec{\mathbf{s}}$$

In a Uniform Field

$$\Delta V = -Ed$$

For a Point Charge

$$V = k_e \frac{q}{r}$$

For a Charge Distribution

$$V = k_e \int \frac{dq}{r}$$

$$E_{x} = \frac{\partial V}{\partial x}$$

$$E_{y} = \frac{\partial V}{\partial y}$$

$$E_z = \frac{\partial V}{\partial z}$$

Potential Due to a Charged Conductor

Charges always reside at the outer surface of the conductor.

The field lines are always perpendicular to surface. Then **E**.ds=0 on the surface

at any point.
Which means, $V_B - V_A = 0$ along the surface.
The surface is an

equipotential surface. Finally, since **E**=0 inside the conductor, the potential *V* is constant and equal to the surface value.

Capacitors

$$C \equiv \frac{Q}{\Delta V}$$

$$(C/V=F)$$

Parallel Plate Capacitor

$$C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d}$$

For series capacitors

$$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \frac{1}{C_j}$$

For parallel capacitors

$$C_{eq} = \sum_{j=1}^{n} C_{j}$$

Stored Energy in a Capacitor

$$U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

Capacitor with a dielectric

$$C = \kappa C_0$$

Current and Resistance

$$I(t) = \frac{dQ}{dt}$$

$$J = \sigma E$$

$$R = \frac{\Delta V}{I}$$

$$\rho = \frac{1}{\sigma} \quad R = \rho \frac{l}{A}$$

$$R = R_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

$$\mathscr{P} = I\Delta V = I^2 R = \frac{\left(\Delta V\right)^2}{R}$$

DC Circuits

Series
$$R_{eq} = \sum_{i} R_{i}$$

Parallel
$$\frac{1}{R_{eq}} = \sum_{i} \frac{1}{R_{i}}$$

Kirchoff's Rules

$$\sum_{\textit{junction}} I_{\textit{in}} = \sum_{\textit{junction}} I_{\textit{out}}$$

$$\sum_{\substack{closed\\loop}} \Delta V = 0$$

RC Circuits

$$q(t) = C\mathcal{E}\left(1 - e^{-t/RC}\right) = Q\left(1 - e^{-t/RC}\right)$$

$$I(t) = \frac{dq}{dt} = \frac{\mathcal{E}}{R} e^{-t/RC}$$

$$q(t) = Qe^{-t/RC}$$

$$I(t) = \frac{dq}{dt} = -\frac{Q}{RC}e^{-t/RC}$$